首页> 外文OA文献 >Morphological transformation of soot: investigation of microphysical processes during the condensation of sulfuric acid and limonene ozonolysis product vapors
【2h】

Morphological transformation of soot: investigation of microphysical processes during the condensation of sulfuric acid and limonene ozonolysis product vapors

机译:烟尘的形态转化:研究硫酸和柠檬烯臭氧分解产物蒸气冷凝过程中的微观物理过程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The morphological transformation of soot particles via condensation of low-volatility materials constitutes a dominant atmospheric process with serious implications for the optical and hygroscopic properties, and atmospheric lifetime of the soot. We consider the morphological transformation of soot agglomerates under the influence of condensation of vapors of sulfuric acid, and/or limonene ozonolysis products. This influence was systematically investigated using a Differential Mobility Analyzer-Aerosol Particle Mass Analyzer (DMA-APM) and the Tandem DMA techniques integrated with a laminar flow-tube system. We discovered that the morphology transformation of soot results (in general) from a two-step process, i.e., (i) filling of void space within the agglomerate; (ii) growth of the particle diameter. Initially, the transformation was dominated by the filling process followed by growth, which led to the accumulation of sufficient material that exerted surface forces, which eventually facilitating further filling. The filling of void space was constrained by the initial morphology of the fresh soot as well as the nature and the amount of condensed material. This process continued in several sequential steps until all void space within the soot agglomerate was filled. And then “Growth” of a spherical particle continued as long as vapors condensed on it. We developed a framework for quantifying the microphysical transformation of soot upon the condensation of various materials. This framework used experimental data and the hypothesis of ‘ideal sphere growth’ and void filling to quantify the distribution of condensed materials in the complementary filling and growth processes. Using this framework, we quantified the percentage of material consumed by these processes at each step of the transformation. We also used the framework to estimate the fraction of internal voids and open voids. This information was then used to derive the volume equivalent diameter of the soot agglomerate containing internal voids and to calculate the in-situ dynamic shape factor. The dynamic shape factor estimated based on the traditional assumption (of no internal voids) differed significantly from the value obtained in this study. Internal voids are accounted for in the experimentally derived in-situ dynamic shape factor determined in the present study. In fact, most of the fresh soot particles considered in this study were largely spherical (dynamic shape factor: ~1.1). The effective density was strongly correlated with the morphological transformation responses to the condensed material on the soot particle and the resultant effective density was determined by the (i) nature of the condensed material; (ii) morphology and size of the fresh soot. This work constitutes the first study that quantitatively tracks microphysical changes in soot morphology, providing details of both fresh and coated soot particles at each step of the transformation. This framework can be applied to model development with significant implications for quantifying the morphological transformation (from the viewpoint of hygroscopic and optical properties) of soot in the atmosphere.
机译:通过低挥发性物质的凝结而形成的烟尘颗粒形态变化,构成了主要的大气过程,对烟尘的光学和吸湿性能以及大气寿命产生了严重影响。我们考虑了在硫酸蒸汽和/或烯臭氧分解产物的冷凝作用下,烟灰附聚物的形态转变。使用差分迁移率分析仪-气溶胶颗粒质量分析仪(DMA-APM)和与层流管系统集成的串联DMA技术,系统地研究了这种影响。我们发现烟灰的形态转化通常是通过两步过程完成的,即,(i)填充团聚体中的空隙空间; (ii)粒径的增长。最初,转变主要由填充过程控制,然后是生长,这导致积累了足以施加表面力的材料,最终促进了进一步的填充。空隙的填充受新鲜烟灰的初始形态以及冷凝物的性质和量的限制。该过程以几个连续的步骤继续进行,直到烟灰附聚物内的所有空隙被填满。然后,只要蒸汽凝结在球形粒子上,球形粒子的“生长”就会持续。我们开发了一种框架,用于量化各种材料凝结后烟灰的微物理转化。该框架使用实验数据以及“理想球体生长”和空隙填充的假说来量化互补填充和生长过程中冷凝材料的分布。使用此框架,我们量化了这些过程在转换的每个步骤中消耗的材料的百分比。我们还使用框架来估计内部空隙和开放空隙的比例。然后,此信息用于导出包含内部空隙的烟灰团聚物的体积当量直径,并计算原位动态形状因数。基于传统假设(没有内部空隙)估算的动态形状因子与本研究中获得的值有显着差异。在本研究中确定的实验得出的原位动态形状因子中说明了内部空隙。实际上,本研究中考虑的大多数新鲜烟灰颗粒大多为球形(动态形状因数:〜1.1)。有效密度与对烟灰颗粒上的冷凝材料的形态转化响应密切相关,并且所产生的有效密度由(i)冷凝材料的性质确定; (ii)新鲜烟灰的形态和大小。这项工作构成了第一个定量跟踪烟灰形态微观物理变化的研究,该研究在转化的每个步骤均提供了新鲜烟灰和包覆烟灰颗粒的详细信息。此框架可用于模型开发,对量化大气中烟灰的形态转化(从吸湿和光学特性的角度而言)具有重要意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号